JOS Plus

Pickett C19-T Microwave Transmission Slide Rule

Richard Smith Hughes

The C19-T was copyrighted by Pickett in 1965, and was designed to aid the solutions involving microwave transmission and communication systems. The instructions are on four 1 inch X 12 inch strips and I have scanned and enlarged them for easier reading (the C19-T with the instructions is uncommon, if not rare). ${ }^{1}$

Sections I, II, III, IV, V, VI, XIII, XIV, and XV are for microwave transmission; transmitter to receiver. I have some background in this, and examples are presented (you will have to refer to the various sections for the equations and slide rule operation); all results are within 0.2 dB (or dBm) of theoretical and 0.5% for non- dB solutions. The instructions for communication receiver and signal processing calculations are contained in sections VII, VIII, IX, X XI, and XII. The last four instruction pages have antenna/reflector gain curves, fixed-loss curves and tables, and echo distortion curves. Note; only the applicable sections are presented, so all sections are not present.

MICROWAVE TRANSMISSION EXAMPLES (See the instructions for C19-T operation)

Paths with Parabolic Transmitter and Receiver

I C19-T Definitions

Received Power, $\mathrm{P}_{\mathrm{R}}=$
(Transmitted Power [$\mathrm{P}_{\mathrm{T}]}$) - (Net Path Loss [NPL]) in dBm
NPL $=L_{P}+$ Fixed Losses in dB
$L_{P}=\left(\right.$ Apparent Free - Space Loss $\left.\left[L_{S}\right]\right)-$
(Antenna Gains [G_{T} and $\left.\mathrm{G}_{\mathrm{R}}\right]$) in dB
Received Power, $\mathrm{P}_{\mathrm{R}}=\left(\right.$ Transmitted Power $\left.\left[\mathrm{P}_{\mathrm{T}}\right]\right)$ - (Net Path Loss [NPL]) in dBm
Received Power, $\mathrm{P}_{\mathrm{R}}=\left(\right.$ Transmitted Power, $\left.\mathrm{P}_{\mathrm{T}}\right)$ -
($\mathrm{L}_{\mathrm{P}}+$ Fixed Losses) in dBm
Received Power, $\mathrm{P}_{\mathrm{R}}=\left(\right.$ Transmitted Power $\left.\left[\mathrm{P}_{\mathrm{T}}\right]\right)+($ Antenna Gains, $\mathrm{G}_{\mathrm{P}}+\mathrm{G}_{\mathrm{R}}$)

- (Free Space Loss [Ls] + Fixed Losses) in dBm

II Apparent Free-Space Loss, Ls in dB

$\mathrm{f}=7.5 \mathrm{GHz}$;

Transmitter/Receiver Distance $=60$ miles;
$\mathrm{L}_{\mathrm{S}} \approx 149.65 \mathrm{~dB}$

Figure 1. Transmitter and Receiver Antenna Configuration [1]

III Parabolic Far Field Antenna Gains, G_{T} and G_{R} in $d B$

Transmitter Diameter, $\mathrm{D}_{\mathrm{T}}=$ Receiver Diameter, $D_{R}=15$ feet, and $\mathrm{f}=7.5 \mathrm{GHz}$
A) Antenna Efficiency, $\eta=55 \%$;
$\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{R}} \approx 48.5 \mathrm{~dB}$
B) Efficiency other than $55 \% ; \eta=65 \%$;
$\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{R}} \approx 48.5+0.7=49.2 \mathrm{~dB}$
The Far-Field distance, d_{1} in miles, can be found from section IV with $\varphi=0^{\circ}$ and $A P=D^{2}$.

$$
\mathrm{D}_{\mathrm{T}}=\mathrm{D}_{\mathrm{R}}=15 \text { feet; } \mathrm{d}_{1} \approx 0.65 \text { miles }
$$

A Passive Reflector Gain, Gp_{p} in dB
$\mathrm{f}=7.5 \mathrm{GHz}, \varphi=40^{\circ}, \mathrm{H}=20$ feet, $\mathrm{W}=15$ feet

$$
\left(\text { Area }[\mathrm{AP}]=300 \mathrm{ft}^{2}\right)
$$

$\mathrm{G}_{\mathrm{P}} \approx 106.5 \mathrm{~dB}$
Effective Antenna Area [AE] = $282 \mathrm{ft}^{2}$
B-scale Passive Far-Field Distance, d_{i} in miles ${ }^{\mathrm{a}}$ $\mathrm{d}_{\mathrm{i}} \approx 0.812$ miles
${ }^{\text {a }}$ Note; if the answer is above the right B scale index the A scale limits are $0.1 / 0.1 / 1$ mile. If above the left B scale index the A scale limits are 1/10/100 miles.

IV Passive Reflector

V Net Path Loss - NPL and Lp

NPL $=L_{p}+$ Fixed Losses in dB Paths Without Passive Repeaters (see Figure 1);

$\mathrm{P}_{\mathrm{T}}=35 \mathrm{dBm}$
$\mathrm{L}_{\mathrm{P}}=\mathrm{LS}-\left(\mathrm{G}_{\mathrm{T}}+\mathrm{G}_{\mathrm{R}}\right) \mathrm{dB}$
$\mathrm{L}_{\mathrm{P}} \approx 149.65-(48.5+48.5)=52.65 \mathrm{~dB}$
Net Path Loss, NPL $=L_{P}+$ fixed losses $\approx 52.65+$ fixed
losses in dB
Received Power, $\mathrm{P}_{\mathrm{R}}=\left(\right.$ Transmitted Power, $\left.\mathrm{P}_{\mathrm{T}}\right)$ -
(Net Path Loss [NPL]) in dBm
$\mathrm{P}_{\mathrm{R}} \approx 35+48.5+48.5-149.65=$

- (17.65 + fixed losses) in dBm

The instructions are not useful for transmitter and receiver diameters other than 10 feet. To find the receiver power with a passive reflector use the following equation:
$P_{R}=P_{T}+G_{T}+G_{R}+G_{T}-\left(L_{s}\right.$ from Transmitter to reflector $+\mathrm{L}_{s}$ from reflector to receive + fixed losses) in dBm
$\mathrm{f}=7.5 \mathrm{GHz}, \mathrm{D}_{\mathrm{R}}=\mathrm{D}_{\mathrm{T}}=15$ feet, d_{1} (from Transmitter to Passive Reflector $=60$ miles), Passive Reflector $\mathrm{H}=20$ feet, $\mathrm{W}=15$ feet, $\varphi=40^{\circ}$, d_{2} (from Passive Reflector to Receiver) $=8$ miles, and $\mathrm{P}_{\mathrm{T}}=35 \mathrm{dBm}$. We have solved for all but the Free-Space Loss for $\mathrm{d}_{2}=8$ miles
$\mathrm{L}_{\mathrm{S}}\left(\mathrm{d}_{2}\right) \approx 132.15 \mathrm{~dB}$
$\mathrm{P}_{\mathrm{R}} \approx 35+48.5+48.5+106.5-(149.65+132.15+$ fixed losses) $=-(43.33+$ fixed losses $)$ in dBm

Figure 2. The Pickett C-19 (front and back)

XIII Wavelength in Free Space, λ in inches

For $\mathrm{f}=7.5 \mathrm{GHz}, \lambda \approx 1.515$ inches
To determine the decimal point:
$\mathrm{f}(1 \mathrm{GHz}$ to 11.808 GHz$)$); λ (11.808 inches to 1 inch)
$\mathrm{f}(11.808 \mathrm{GHz}$ to 100 GHz$)$); λ (1 inch to 0.11808 inches)

XIV Fresnel Zone clearance, $\mathbf{R}_{\mathbf{f}}$ in feet

$\mathrm{d}=60$ miles, $\mathrm{d}_{1}=12$ miles, $\mathrm{f}=7.5 \mathrm{GHz}, \mathrm{R}_{\mathrm{f}} \approx 76.25$ feet
$\mathrm{d}_{\mathrm{t}}=$ distance from antenna to obstruction $=12$ miles
$\mathrm{h}(\mathrm{K}=4 / 3)^{\mathrm{b}} \approx 72$ feet; $\mathrm{h}(\mathrm{K}=1) \approx 96$ feet; $\mathrm{h}(\mathrm{K}=2 / 3) \approx 144$ feet
${ }^{\mathrm{b}}$ Note; if the slide must be repositioned, the B scale limits are $1 / 10 / 100$ feet; if not, the B scale limits are 100/1,000/100,000 feet.

Figure 3. Passive Reflector; Stations 1 and 2 are Transmitter and Receiver; Note the angle C in the figure is our φ [2]

Figure 4. Fresnel Zone (His our R_{f}) [1]

XV Earth Curvature

(b) Actual radio paths versus K
(a) Effective earth profiles versus K

Figure 5. Earth Curvature and Antenna Height, h [1]

References

1. Bell Telephone Laboratories, Transmission Systems for Communication, 1964.
2. Passive Repeater Engineering, 1989. http://www.valmont.com/userfiles/file/specialty_structures/Catalog161A.pdf

Notes

1. JOS Plus indicates that supplemental material for this article is available at www.oughtred.org. This file contains the scanned C-19 slide rule instructions.
